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• July 2023: Met Office DA team considering using NOAA’s 
EnKF/ETKF for convective scale DA via their participation in JEDI

• Sep 2023: NOAA’s Sergey Frolov asks for help to improve 
NOAA’s EnKF/ETKF for convective scale DA

• Foci
• New method for multiscale fcst error covariance localisation

• New method for near bound variables that:
•  Accounts for fact that ob-error variance is a strong function of the unknown 

true state; e.g. ob-error for rainfall small/large when true rainfall small/large

• Account for highly skewed nature of uncertainty distributions
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Background
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Skewness can make the posterior mean be bigger than 

both the prior mean and the observed value
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Days when x-z plots of forecast error look like this.



Optimal single-ob corrections look like this.



NOAA’s LETKF correction with nens=40 

Spurious covariances



Whereas, new multiscale R-localization provides the improved correction 



Days when x-z plots of forecast error look like this.



Optimal single-ob corrections look like this.



NOAA’s LGETKF correction with nens=40 

Spurious covariances



New multiscale R-localization provides the improved correction (nens=40). 
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Background: NOAA’s Gain form of LETKF (Bishop et al. 2017, Lei et al. 2018)

Vertical column of variables at red dot is 
updated using local obs (purple triangles).

Vertical localisation is achieved by 
inexpensively expanding the ensemble size 
from 80 to ~1200 member ensemble using 
modulation. (Bishop and Hodyss, 2009, et al.)

Horizontal localisation is achieved by 
artificially increasing ob-error variances with 
horizontal distance from red dot
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MultiScale localization in Ens/Hybrid-Var versus LETKF

In Var, multiscale error covariance localisation done through P

In LETKF, we must do it through R.

How? 
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MultiScale R localisation for LGETKF: new aspects in blue
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MultiScale R localisation for ETKF

Remarkably, the equations simplify greatly when the above formulae 

are substituted, and one can implement multiscale R localisation by 

only altering the ob-operator H and the innovation y-Hxf. 

Otherwise, the ETKF algorithm is unchanged.

…so simpler than it looks at first glance.



Obs network as shown by red hexagrams (every 5th grid point is observed). w1 is a uniform random number between 
0.01 and 1. w1 =1 means large scales have weight of 1. We’ll do 140 trials of the 3 methods with 7 possible localisation 
lengths for each method. The field below is just a single correction from the ETKF with 2000 ensemble members. 

The ob-error variance was chosen to be a random draw from a gamma pdf with a mean of 0.5 and a relative variance of 0.5 
(k=2,theta=0.25). Pdf of R values given below. Recall that the forecast error variance at all grid points has been set to 1.  
These small to medium R values make it difficult for the old R localisation
to work properly. However, the new R localisation should have no problem in 
this case. Note that for univariate DA and R=0.5 and Pf=1, then
Pa=Pf-Pf^2/(P+R)=1-1/1.5=1/3.

For the runs without Spectral Localisation, a tighter vertical localisation was
 required to remove spurious correlations in the vertical. This meant that 8 
Vertical modes were required to represent vertical localisation and the 
Modulated ensemble size became 40x8=320 members. With spectral 
Localisation, a much broader vertical localisation could be used so only 4
Vertical modes were required yielding a 2x40x4=320 member ensemble;ie
The modulated ensemble sizes with and without spectral localisation are the
 same. 

Pdf of R



Optimal Gaussian DA (ETKF, 2000 members)

Spectral loc MSETKF, 40 members

Spectral loc, Old SSETKF, 40 members

No spectral Loc, Old SSETKF, 40 members

MSE over 240 independent trials for 6 different localisation length scales

fac

For single scale attenuation (SSA), loc_length=fac*((2/3)dxL+(1/3)dxS)
For MSETKF, loc_length1=fac*dxL, loc_length2=fac*dxS 

dxL=length scale defining large scale error
dxS=length scale defining small scale error
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Spectral loc, New SSETKF, 40 members
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Finally, we need to add a capability for near bound variables like aerosols 
and H20 in all its phases
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Results for Relative Error Variance (large scales): 85% Rel MSE reduction 

relative to Gaussian
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Three problems with EAKF/EnKF (top panel) for bounded variable DA
1. Ob error variance is not a function of the unknown true state
2. The analysis mean does not get close enough to the truth when the observed values are 

bigger than the prior mean. (Associated with not accounting for skewness in ob-uncertainty) 
3. Often produces unrealistic negative values in ensemble

EAKF/EnKF

New
Method
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of log of Gaussian posterior.
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Remarkably, this equation is isomorphic to the perturbed obs Gaussian equation! (Ens of Vars)

Hence, relatively easy to implement in existing 3D/4DVar or EnKF DA schemes. 

1. The fact that ob-error 
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 the Gaussian case - other things being equal. This accounts for Likelihood skewness.

For bounded variables (gamma prior, inverse-gamma 

obs pdf) generalization leads to …
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Over 210 Trials, with a fixed Rr=0.25 and the distribution of truth given by 

squaring each element of the vectors generated for our Gaussian 

experiment, we can beat optimal Gaussian performance with 40 members

22

Optimal Gaussian DA (ETKF, 2000 members)

Proxy for NOAA’s 40 member EnKF

New Multiscale Bounded Variable ETKF

MSE

Localisation length scale



• A new multiscale localisation technique for ETKF significantly 
outperforms NOAA’s current single-scale localisation method in 
multiscale error regimes for a nens=40 member ensemble.

• An extension for 4DVar/ETKF type DA schemes has been developed to 
handle the assimilation of “near-bound” variables. Extension 
simultaneously accounts for variations of ob-error std with the truth and 
the skewness of near-bound uncertainty distributions. 

• These improvements enable the bounded variable ETKF with 
multiscale R-localisation to outperform the optimal Gaussian scheme 
(2000 ensemble members) with just 40 ensemble members. 

• With help from BoM’s data assimilation team, we hope to implement 
aspects of these improvements in December 2024 during a planned trip 
to Boulder.
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Summary


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

